

Neural network based reconstruction of global surface ocean pCO₂ from 2001 to 2013

Anna Sommer¹, Marion Gehlen¹, Carlos Mejia²,
Mathieu Vrac¹

¹LSCE/CEA Saclay, Orme des Merisiers
IPSL, Paris

Motivation of study:

provide update of the global ocean anthropogenic CO₂ sink based on observations

=> yearly assessment of global Carbon budget

provide estimate of inter-annual variability of source and sink regions across Atlantic ocean

contribute to definition of next generation observing systems

<u> Dbjective</u>:

definition of an observing system enabling the release of carbon system estimates at the scale of the Atlantic basin at monthly, respectively seasonal frequencies

Carbon system estimates : pCO₂

Spatial scope : global, but focus on Atlantic basin

Air-sea flux

$$f_{CO2} = k \rho L (pCO_{2,ocean} - pCO_{2,atm})$$

k – gas transfer coefficient (function of wind speed)

L – solubility of CO₂ (function of SSS, SST, pressure)

 ρ – water density

 $pCO_{2,atm} = P_{dry} * xCO_2 - atmospheric partial pressure$

pCO_{2,ocean} (seawater partial pressure) - ?

Observation data: SOCAT v4 – ship traces for period

Jan 1970-Dec 2015 (Bakker et al., 2016)

Monthly data on 1°x1°

pCO_{2,ocean}

bservation data: SOCAT v4 – ship traces for period

Jan 1970-Dec 2015

<u>Chosen period:</u> 2001-2013

Mapping of pCO₂

Rödenbeck et al. 2015

Comparison of 14 different mapping methods

Neural network model

 $1 \text{ st. } pCO_{2 \text{ Clim}} = f(SSS,SST,SSH,MLD,Chl,lon,lat)$

 $2 \text{ st. } pCO_{2 \text{ Anom}} = pCO_{2} - pCO_{2 \text{ Clim}}$

 $CO_{2 Anom} =$

g(SSS,SST,SSH,MLD,Chl,pCO_{2,Atm},lon,lat,SSS_{Anom},

SSTAnom, SSHAnom, MLDAnom, ChlAnom, pCO2, Atm Anom)

Copernicus: Global Ocean Obervation-based Reprocessed

Products: <u>SSS, SST, SSH</u>

CMEMS products: Chl

ECMWF, CAMS Greenhouse Gases Flux Inversions:

pCO_{2,atm}

Neural network model

For each month

1 st. 5 layers, activation - tanh, last level linear

1856 parameters, ~17238 training grid points

2 st. 4 layers, activation - tanh, last level linear

~1796 parameters, 16832 training grid points (over 3 months)

pCO₂ Climatology

pCO² Climatology

	Validation	SOCAT	SOCAT vs.Taka
RMSd	0.26	12.7	
R2	0.93	0.9	
Bias	-0.01	-0.83	
Spatial correlation		0.44	0.43

Reconstructed pCO₂

	Validation	SOCAT	Climatology vs.Taka
RMSd	19.04	19.1	17.28
R2	0.73	0.75	0.64
Bias	-0.22	0.78	0.85

Map of biomes used for pCO2 reconstruction

Rödenbeck et al. 2015 (Fay and McKinley 2014)

Global comparison of reconstructed pCO₂

FNN pCO₂ is comparable with other mapping methods

Regional comparison of reconstructed pCO_2 : North Atlantic (green region)

pCO2 reconstructed. Atlantic Equatorial Atlant S

In regions with small number of observation data it is hard to interpret the outputs from different mapping methods

Conclusion

We are able to reconstruct pCO $_2$ over the global ocean with a good accuracy: RMSds are \sim 19 uatm, r2 is about 0.73.

- 2. We are able to represent interannual variability.
- 3. Our results are in the agreement with other mapping methods.
- 4. However, there is room for improvement especially in regions with limited data coverage => we propose to assess the impact of novel data in these regions through a model-based approach.

Perspectives

Use of NEMO PISCES Model:

- 1. Subsampling of model along ship tracks and application of chosen neural network model => provides best estimate of model performance given available information.
- 2. Expanding existing network by a series of Network design studies to identify optimal future observing systems.
 - => Will be done over the next few months.

Thank for your attention! for any information contact: anna.sommer@lsce.ipsl.fr

Climatological pCO2 in Surface Water [3,040K + wint Rev Oct 09] for February 2000

